
Abstract Structure–cytotoxicity relationships were stud-
ied for a series of 90 HEPT derivatives by means of 
multiple linear regression (MLR) and artificial neural 
network (ANN) techniques. The values of log(1/CC50)
(CC50=cytotoxic dose of compound required to reduce
the proliferation of normal uninfected MT-4 cells by
50%) of the studied compounds were correlated with the
descriptors encoding the chemical structures. Using the
pertinent descriptors revealed by the regression analysis,
a correlation coefficient of 0.935 (s=0.149) for the train-
ing set (n=81) was obtained for the ANN model with a
5–6–1 configuration. The results obtained from this study
indicate that the cytotoxicity of HEPT derivatives is
strongly dependent on hydrophobic factors, mainly
log P(R1), and dependent on the steric factors, especially
ΣMW(R3+R4). Comparison of the descriptors’ contribu-
tion obtained in MLR and ANN analysis shows that the
contribution of some of the descriptors to cytotoxicity
may be non-linear.

Keywords Artificial neural network · Descriptors’ 
contribution · HEPT derivatives · Multiple linear 
regression · Structure–cytotoxicity relationships

Introduction

Infection with human immunodeficiency virus type-1
(HIV-1) causes progressive destruction of the immune
system, which ultimately results in acquired immunode-
ficiency syndrome (AIDS). An essential step in the life
cycle of HIV-1 is reverse transcription of the viral RNA
genome to produce a double-stranded DNA copy. This
process is mediated by the virally encoded reverse tran-
scriptase (RT). [1]

Since RT is essential for virus replication and has no
closely related identified cellular homologue, it has been
the prime target for antiviral therapy against AIDS. [2]
Various compounds have been reported as potent and 
selective inhibitors of HIV.

Currently, dideoxynucleoside including 3’-deoxy-3’-
azidothymidine (Zidovidine or AZT), [3] 2’,3’-dideoxy-
inosine (ddI), 2’,3’-dideoxycytidine (ddC); and, most re-
cently, 2’,3’-didehydro-3’-deoxythymine(d4T) are ap-
proved for use in the treatment of HIV infection; these
prodrugs are thought to produce their antiviral effects
through the inhibition of HIV reverse transcriptase and
viral DNA chain termination via their triphosphate 
metabolites. [4] However, it is found that the treatment
of some of these nucleoside inhibitors such as AZT is
sometimes associated with considerable site effects such
as bone marrow suppression.

Another class of HIV-RT inhibitors, non-nucleoside
inhibitors (NNRTIs), have been identified as potent and
highly specific inhibitors of HIV-1 replication. They in-
teract with HIV-1 RT at a nonsubstrate binding site. Ex-
amples are HEPT, TIBO, nevirapine, pyridinone, TSAO,
α-APA, and quinoxaline. [5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Among these NNRTIs, HEPT has proved to be a po-
tent and selective inhibitor of HIV-1. Other animal retro-
viruses and even HIV-2 are totally unaffected by this
compound. Design of new HEPT derivatives requires a
more detailed knowledge of the mechanism of RT inhibi-
tion by this class of compounds and their cytotoxicity.

Assessment of QSAR for cytotoxicity, which consti-
tutes the second component of the selectivity index, rep-
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Table 1 Chemical structure of HEPT derivatives and experimental cytotoxicity values

Molecule R1 R2 R3 R4 X Y CC50 (µM)a

No.

Training set
01 CH2OCH2CH2OH Me H Me O S 420
02 CH2OCH2CH2OH Et H Me O S 181
03 CH2OCH2CH2OH t-Bu H Me O S 75
04 CH2OCH2CH2OH CH2OH H Me O S 292
05 CH2OCH2CH2OH CF3 H Me O S 196
06 CH2OCH2CH2OH F H Me O S 282
07 CH2OCH2CH2OH Cl H Me O S 210
08 CH2OCH2CH2OH Br H Me O S 141
09 CH2OCH2CH2OH I H Me O S 106
10 CH2OCH2CH2OH NO2 H Me O S 170
11 CH2OCH2CH2OH OH H Me O S 446
12 CH2OCH2CH2OH Me Me Me O S 243
13 CH2OCH2CH2OH Cl Cl Me O S 130
14 CH2OCH2CH2OH Me Me Me S S 172
15 CH2OCH2CH2OH COOMe H Me O S 221
16 CH2OCH2CH2OH COMe H Me O S 228
17 CH2OCH2CH2OH COOH H Me O S 352
18 CH2OCH2CH2OH CONH2 H Me O S 306
19 CH2OCH2CH2OH CN H Me O S 234
20 CH2OCH2CH2OH H H CH2=CH–CH2 O S 183
21 CH2OCH2CH2OH H H COOMe O S 6,6
22 CH2OCH2CH2OH H H COOHNPh O S 18
23 CH2OCH2CH2OH H H Et S S 148
24 CH2OCH2CH2OH H H Pr S S 230
25 CH2OCH2CH2OH H H i-Pr S S 400
26 CH2OCH2CH2OH Me Me i-Pr S S 52
27 CH2OCH2CH2OH Cl Cl Et S S 64
28 CH2OCH2CH2OH H H Et O S 40
29 CH2OCH2CH2OH H H Pr O S 244
30 CH2OCH2CH2OH H H i-Pr O S 231
31 CH2OCH2CH2OH Me Me Et O S 149
32 CH2OCH2CH2OH Me Me i-Pr O S 128
33 CH2OCH2CH2OH Cl Cl Et O S 51
34 CH2OCH2CH2OH H H Me S S 123
35 CH2OCH2CH2OMe H H Me O S 299
36 CH2OCH2CH2O–n-C5H11 H H Me O S 55
37 CH2OCH2CH2OCH2Ph H H Me O S 45
38 CH2OMe H H Me O S 244
39 CH2OEt H H Me O S 231
40 CH2OPr H H Me O S 147
41 CH2OBu H H Me O S 83
42 CH2OCH2CH2SiMe H H Me O S 32
43 CH2OCH2Ph H H Me O S 95
44 CH2OEt H H Et S S 81
45 CH2OEt Cl Cl Et S S 45
46 CH2OEt H H c-Pr S S 46
47 CH2OEt H H Et O S 161
48 CH2OEt Cl Cl Et O S 45
49 CH2O–i-Pr H H Et O S 143
50 CH2OCH2-c-Hex H H Et O S 17
51 CH2OCH2Ph H H Et O S 34
52 CH2OCH2CH2Ph H H Et O S 38
53 CH2OEt H H i-Pr O S 106
54 H H H Me O S 250
55 Me H H Me O S 150
56 Et H H Me O S 94
57 Bu H H Me O S 89
58 CH2OCH2CH2OH H H Me O CH2 352
59 CH2OCH2CH2OH H H Et O CH2 391
60 CH2OCH2CH2OH Me Me Et O CH2 281
61 CH2OEt Me Me Et O CH2 245
62 CH2OEt H H Et O CH2 207
63 CH2OCH2CH2OH H H i-Pr O CH2 295
64 CH2OCH2CH2OH Me Me i-Pr O CH2 221
65 CH2OEt H H i-Pr O CH2 186



resents one of the most effective computational ap-
proaches for inspection of this component.

Experimental data (CC50) are generally available only
as the upper limit of the non-cytotoxic concentration.
Moreover, they encompass a narrower concentration range
than the EC50 data. Notwithstanding these limitations,
both earlier approaches [multiple linear regression (MLR)
and an artificial neural network (ANN)analysis] have been
applied in this work to SAR cytotoxicity studies.

Both ANN and MLR techniques were used for mod-
eling the observed cytotoxicity of HEPT derivatives. The
adequacy of the models developed was examined by
means of the prediction of the cytotoxicity of nine HEPT
derivatives, which represent 10% of our total subsets (90
molecules).

The results obtained by 2D-QSAR approaches will be
analyzed in order to find the best parameters responsible
for the interactions between active molecules and the
possible interaction site.

Material and methods

Biological data

All compounds with known cytotoxic concentrations were taken
from various published studies. [15, 16, 17, 18, 19] The data set
consists of 90 compounds, for which the in vitro cytotoxicity was
measured in MT-4 cell cultures.

The log(1/CC50) values were used as dependent variable. CC50
(µM) represents the molar concentrations of drug required to re-
duce the viability of 50% of the mock-infected MT-4 cells.

The chemical structures considered in the training and predic-
tion sets are given in Table 1 (see Fig. 1 for the general structure). 

Molecular descriptors

A set of common molecular descriptors related to physicochemi-
cal, electronic and geometric properties of the molecules was used
for this study. As all the compounds studied have a common skele-
ton, we found it judicious to describe the molecule by means of
properties of the substituents (R1, R2, R3 and R4) attached to the
basic skeleton. Determination of the pertinent properties for a giv-
en substituent may be useful for evaluating local interactions be-
tween the molecule and the receptor site.

Moreover, we tried to take into account properties of the mole-
cule such as its molecular weight, size, height etc. This is justified
by the fact that, before their possible interaction with a given re-
ceptor site, the molecules must be transported through many liquid
layers and have correct general dimensions for site access.

Molecular properties used for each substituent and the whole
molecule, were:
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Table 1 (continued)

Molecule R1 R2 R3 R4 X Y CC50 (µM)a

No.

66 CH2OEt Me Me i-Pr O CH2 43
67 Bu H H i-Pr O CH2 58
68 CH2 CH2OMe H H Et O CH2 362
69 CH2CH2OMe H H i-Pr O CH2 195
70 CH2OCH2CH2OH H H Me O O 345
71 CH2OCH2CH2OH H H I O S 20
72 CH2OCH2CH2OH H H CH=CPh2 O S 21
73 CH2OCH2CH2OH H H CH=CHPh O S 95
74 CH2SCH3 H H Et O CH2 32
75 CH2SCH2CH3 H H Et O CH2 37
76 CH2SCH3 Me Me Et O CH2 52
77 CH2SCH2CH3 Me Me Et O CH2 68
78 CH2SCH3 H H i-Pr O CH2 37
79 CH2SCH2CH3 H H i-Pr O CH2 37
80 CH2OCH2CH2OH H H COCH(Me)2 O S 12
81 CH2OCH2CH2OH H H COPh O S 13

Prediction set
82 CH2OCH2CH2OH Me Me Et S S 277
83 CH2OCH2CH2OH H H Me O S 743
84 CH2O–c-Hex H H Et S S 223
85 CH2OEt H H c-Pr O S 224
86 CH2OCH2CH2OH H H CH=CH2 O S 76
87 CH2OCH2CH2OH H H CH2Ph O S 23
88 CH2OCH2CH2OH H H C≡CMe O S 19
89 CH2OCH2CH2OH H H C≡CPh O S 3,4
90 CH2OCH2CH2OH H H C≡CH O S 18

a CC50: cytotoxic dose of compound required to reduce the proliferation of normal uninfected MT-4 cells by 50%

Fig. 1 General structure of HEPT derivatives



● Size and shape described by means of van der Waals volume
(V) and surface (S). [20]

● Molecular dimensions (length, width and height). Length (L) is
the distance along the screen x-axis between the left- and right-
most atoms plus their van der Waals radii. Width (W) is the
distance along the screen y-axis between the top and bottom-
most atoms plus their van der Waals radii. Height (H) is the
distance along the screen z-axis between the nearest and far-
thest atoms plus their van der Waals radii. [20]

● The ratios V/L, V/W, W/H were also calculated.
● log P, the partition coefficient between octanol and water. [20]
● Molar refractivity (MR). [20]
● Molecular weight (MW). [20]
● Ovality estimation (O), for each substituent was that given by

Bodor [21]

(1a)

(1b)

59 parameters were calculated for each compound.

Statistical methods

Multiple linear regression

This method [22] was used to generate linear models be-
tween the cytotoxicity and the molecular descriptors.

Because of the large number of descriptors consid-
ered, a stepwise MLR procedure based on the forward-
selection and backward-elimination methods was used to
select the powerful variable descriptors.

In order to avoid all difficulties in the interpretation
of the resulting models, pairs of variables with a correla-
tion coefficient greater than 0.7 were classified as inter-
correlated, and only one of these was included in the
screened model.

The validity of the model was proven by the multiple
correlation coefficient (r), the standard deviation (s) and
the F-test value. The reliability of the model was indicat-
ed in terms of predictive q2.

Artificial neural network

As biological phenomena are considered non-linear by
nature, it therefore appears very interesting to study the
present series of compounds with the ANN technique,
[23] in order to discover the possible existence of non-
linear relationships between cytotoxicity and molecular
descriptors that appeared pertinent for the linear model.

The ANN was trained by the back-propagation (BP)
of errors algorithm [24] and had the following architec-
ture:

● An input layer including the pertinent descriptors of
MLR.

● A hidden layer for which the ratio of the number of
data points in the training set to the number of vari-
ables controlled by the network, ρ, is critical to the
predictive power of the neural net. The range &
1.8lt;ρ&lt;2.2 [ρ=(number of data points in the train-
ing set)/(number of adjustable weights controlled by

the network)], [25] was used as a guideline of the ac-
ceptable number of neurons in the hidden layer. It is
claimed that, for ρ≤1.0, the network simply memoriz-
es the data, whereas for ρ≥3.0, the network loses its
ability to generalize.

● An output layer of one neuron, representing the cyto-
toxic concentration. The input and output values were
normalized.

After this step, the learning rate was varied from 0.01 to
0.9 and for each learning rate the momentum was exam-
ined from 0.1 to 0.9.

Finally, the number of the neurons at the hidden layer
with the use of optimized momentum and learning rate
was determined.

Results and discussion

Multiple linear regression analysis

MLR analysis was performed on the compounds de-
scribed in Table 1; we have included all 81 molecules of
the training set for the model generation.

After collecting the data, we submitted all parameters
to regression; a few suitable models were obtained. The
best model is shown in Eq. (2):

(2)

This equation shows that five descriptors appear in the
model. These descriptors consist of log P, which is a hy-
drophobic descriptor for substituents R1 and R4; MR(R2),
which can be considered as both an electronic and a steric
descriptor, and the ΣMW(R3+R4) parameter, which is a
steric descriptor. The parameter H(z) is a descriptor that
expresses the dimension of molecule along the z-axis.

It seems appropriate to compare these results with
those presented previously by Tronchet et al. [26] The
statistical quality of our equation is slightly superior to
their results, with a lower number of descriptors (five 
parameters compared with 11 parameters) and a larger
data set.

According to the results above, log(1/CC50) depends
positively on log P(R1), as reflected in molecules 38,
39–40, 41–42, 43–33, 48.

The molecules 1, 2, 3 and 15, 16, 17, 18 unambigu-
ously show that log(1/CC50) increases with the molar re-
fraction of substituent R2.

We also observed the positive influence of ΣMW(R3
+ R4) as seen in the case of the set of compounds 1,
12–31, 32–21, 22–44, 46–68, 69–61, 66–72, 73. In the
same way, increasing H(z) leads to an increase in log
(1/CC50).
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The cytotoxicity of HEPT derivatives increases with
decreasing log P(R4) values, as shown if one analyzes
the cytotoxicity of molecules 24, 25 and 29, 30.

It is noteworthy that there is no significant intercorre-
lation between descriptors appearing in the selected
model, as seen in Table 2.

We have used two strategies for testing the validity of
the selected MLR model. In the first strategy, a cross-
validation method [27] was used for which the Q coeffi-
cient is the cross-validated q2 [28] that describes the pre-
dictive power of the model.

(3)

● PRESS: predictive residual sum of squares
● Var: variance of the observed values around the mean

value

In the present work, nine molecules have been removed
randomly from the training set each time and a model
was developed with the remaining molecules. At each
step, the cytotoxicity values of the nine molecules were
predicted by the model obtained. This process was re-
peated until each molecule had a chance to be predicted
once. For this procedure, the Q value was found to be
0.730, which is close to the value (0.743) obtained by
Tronchet et al. [26]

The model obtained was considered to be a good pre-
dictive one, according to Wold [27] (Q>0.6).

As a second strategy, the cytotoxicity of nine HEPT
derivatives was predicted by using the best MLR model
(Eq. 2).

An appropriate measure of the model’s predictive
ability is the PRESS/SSY ratio, [27] where PRESS is
predictive residual sum of squares and SSY is the sum of
the squares of the experimental values. The PRESS/SSY
ratio for the test set was 0.023, and a value of this ratio
smaller than 0.1, indicating an excellent predictive quali-
ty of the model.

Artificial neural network analysis

The ANN was generated by using the pertinent des-
criptors that appeared in the MLR model as input. A
5–6–1 neural network architecture was developed with
optimum momentum and learning rate of 0.9 and 0.02,
respectively, and with 30,000 iterations. The six hidden
neurons were chosen to maintain ρ [25] between 1.8 and
2.2. To verify this condition we have also performed a

trial by taking three to nine neurons in the hidden layer
and it was found that the six hidden neurons give the
best result for the training and test sets, as given in 
Table 3.

To evaluate the neural network, the correlation coeffi-
cient r of its results is compared with the r for the regres-
sion model developed in this work. The r values were
0.884 and 0.935 for the training set in the present MLR
and the ANN, respectively. The corresponding standard
error s for the two analyses was 0.204 and 0.149 respec-
tively. This reveals the improvement of the MLR model.

We used the same procedure as for the MLR analysis
for testing the validity of the ANN model selected. The
corresponding PRESS/SSY for the prediction set is
0.023 for both MLR and ANN. This reveals an excellent
predictive quality for both methods used in this work.

The corresponding Q values in cross-validation meth-
ods were 0.730 and 0.70 in MLR and ANN, respectively.
These results indicate that both MLR and ANN have
good predictive ability. [27]

The plot in Fig. 2a, b indicates that there is a signifi-
cant correlation between actual values and calculated
values of log(1/CC50) from MLR and ANN for the train-
ing and test sets. An examination of the possible outliers
showed that three compounds (21, 84 and 89) have resid-
uals higher than 3s (Fig. 2a). However, the ANN indicat-
ed four compounds (72, 84, 88 and 89) with residuals
larger than 3s (Fig. 2b).

Analysis of descriptors’ contributions in ANN 
and MLR models

The evaluation of the relevance of descriptors proved
quite interesting and useful, so we chose to estimate the
relative contributions of descriptors in two different ways:
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Table 2 Correlation matrix
log 1/(CC50) log P(R1) RM(R2) ΣMW(R3+R4) log P(R4) H(z)

log 1/(CC50) 1.000
log P(R1) 0.364 1.000
RM(R2) –0.148 –0.360 1.000
ΣMW(R3+R4) 0.564 –0.163 –0.235 1.000
logP(R4) 0.054 –0.009 –0.172 0.587 1.000
H(z) 0.296 0.082 0.006 0.016 0.015 1.000

Table 3 Variation of r and s with number of hidden neurons

Hidden r(training) s(training) r(test) s(test)
neurons

3 0.8988 0.1851 0.5116 0.6324
4 0.8970 0.1867 0.5102 0.6333
5 0.8978 0.1860 0.4981 0.6382
6 0.8990 0.1850 0.5117 0.6322
7 0.9000 0.1839 0.5040 0.6356
8 0.8999 0.1849 0.4967 0.6383
6 0.8978 0.1860 0.4982 0.6379



i. The contribution of descriptors i (i=1–5) was estimat-
ed from the trained 5–6–1 configuration network. The
descriptor under study was removed from the 5–6–1
ANN together with its corresponding weights. Then
the network (4–6–1) calculated the output of each
molecule as usual. The mean of the absolute deviation
values ∆mi between the observed value and the esti-
mated value for all compounds was calculated. This
process was reiterated for each descriptor. Finally, the
contribution Ci [29] of descriptor i is given by:

(4)

ii. We elaborated a method, [30] which consists of re-
moving a descriptor and analyzing the statistical coef-
ficient between observed and calculated using ANN
and MLR. Comparison between these statistics and
those calculated by ANN or MLR when no descriptor
was removed gave an idea of the importance of the
descriptor removed. The results of this section are
given in Table 4.

According to the results above, it appears that log P(R1),
ΣMW(R3+R4) and log P(R4) have the same classifica-
tion in the two methods (i and ii) used, and that these
parameters contribute greatly to log(1/CC50) for the
training and test sets. These results also indicate that the
relative importance of the descriptors log P(R1) and
ΣMW(R3+R4) have changed order in the two techniques
used (MLR and ANN).

From the results obtained, one may conclude that of
some of the parameters contributing to the RT cytotoxic-
ity property can be non-linear. This conclusion arises
from the fact that the same descriptors have been used
for the development of the MLR model and the ANN.

To ensure that the results obtained were not due 
to chance and to lend credence to our results, we have 
run a scrambling experiment. The dependent variable
[log(1/CC50)] was randomly scrambled and then the same
algorithms used in MLR and ANN run once again. The
statistical results (the correlation coefficient r and the
standard deviation of the results) were compared with the
r and s of the MLR and ANN models developed in this
work. The r values were 0.170 and 0.460 compared with

0.884 and 0.935; for the s values we have obtained 0.432
and 0.402 compared with 0.204 and 0.149 for the training
set in MLR and ANN, respectively. This test confirms
and clearly shows that the descriptors selected in this
study describe the activity studied very well.

Conclusions

In this series, the cytotoxicity of the above compounds
was investigated by means of MLR and ANN tech-
niques. The results of the QSAR study obtained in this
work indicate that the cytotoxicity of HEPT derivatives
depends strongly on the hydrophobic factors as ex-
pressed by log P(R1) and log P(R4) together, and is spe-
cially dependent on the steric factors mainly accounted
for by ΣMW(R3+R4) and the molar refraction MR(R2)
and also by H(z). In addition this study reveals the non-
linear effects in HEPT analogues.
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Table 4 Evaluating the impact of each descriptor in ANN and MLR

Removed C% C% r s r s PRESS/SSYc PRESS/SSYc

descriptor ANNa MLRa ANNb ANNb MLRb MLRb ANN (test) MLR (test)

log P(R1) 25.532 23.021 0.759 0.277 0.721 0.302 0.016 0.016
RM(R2) 17.312 16.498 0.914 0.170 0.865 0.218 0.023 0.021
ΣMW(R3+R4) 22.695 26.612 0.769 0.264 0.455 0.388 0.029 0.031
log P(R4) 18.076 17.404 0.852 0.220 0.791 0.266 0.025 0.026
H(z) 16.384 16.463 0.913 0.172 0.851 0.228 0.024 0.026
Any one 100 100 0.935 0.149 0.884 0.204 0.023 0.023

a The contribution (C%) of descriptor given by the first method (i)
described in the text

b Given by the second method (ii) described in the text
cPRESS: predictive residual sum of squares; SSY: sum of square
of the observed values

Fig. 2 Experimental and predicted values from MLR (below) and
ANN (above) for the training and test sets
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